Calcium/calmodulin kinase II in the pedunculopontine tegmental nucleus modulates the initiation and maintenance of wakefulness.

نویسندگان

  • Subimal Datta
  • Matthew W O'Malley
  • Elissa H Patterson
چکیده

The pedunculopontine tegmentum nucleus (PPT) is critically involved in the regulation of wakefulness (W) and rapid eye movement (REM) sleep, but our understanding of the mechanisms of this regulation remains incomplete. The present study was designed to determine the role of PPT intracellular calcium/calmodulin kinase (CaMKII) signaling in the regulation of W and sleep. To achieve this aim, three different concentrations (0.5, 1.0, and 2.0 nmol) of the CaMKII activation inhibitor, KN-93, were microinjected bilaterally (100 nl/site) into the PPT of freely moving rats, and the effects on W, slow-wave sleep (SWS), REM sleep, and levels of phosphorylated CaMKII (pCaMKII) expression in the PPT were quantified. These effects, which were concentration-dependent and affected wake-sleep variables for 3 h, resulted in decreased W, due to reductions in the number and duration of W episodes; increased SWS and REM sleep, due to increases in episode duration; and decreased levels of pCaMKII expression in the PPT. Regression analyses revealed that PPT levels of pCaMKII were positively related with the total percentage of time spent in W (R(2) = 0.864; n = 28 rats; p < 0.001) and negatively related with the total percentage of time spent in sleep (R(2) = 0.863; p < 0.001). These data provide the first direct evidence that activation of intracellular CaMKII signaling in the PPT promotes W and suppresses sleep. These findings are relevant for designing a drug that could treat excessive sleepiness by promoting alertness.

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Evaluation of nicotinic receptor of pedunculopontine tegmental nucleus in central cardiovascular regulation in anesthetized rat

Objective(s): Cholinergic neurons are important neurons in the Pedunculopontine tegmental nucleus (PPT). In this study, nicotinic receptor of the PPT in central cardiovascular regulation in the anesthetized rat was evaluated. Materials and Methods: Saline, acetylcholine (Ach; doses: 90 and 150 nmol), hexamethonium (Hexa; doses: 100 and 300 nmol) and higher doses of Hexa (300 nmol) + Ach (150 nm...

متن کامل

The Effects of Inactivation of Pedunculopontine Tegmental Nucleus by Cobalt (II) Chloride on Cardiovascular Responses in Hemorrhagic Hypotensive Rats

Introduction: Based on the evidence, the Pedunculopontine Tegmental nucleus (PPT) is involved in cardiovascular function regulation. In this study, the probable role of PPT on cardiovascular parameters in the hypotension induced by Hemorrhage (HEM) was evaluated.  Methods: The study rats were divided up into 5 groups: 1. Control (Saline); 2. Cobalt(II) chloride (CoCl2); 3. HEM; 4. Saline+HEM; ...

متن کامل

Cardiovascular effects of nitrergic system of the pedunculopon-tine tegmental nucleus in anesthetized rats

Objective(s): Nitric oxide (NO) is an important neurotransmitter in central nervous system involved in central cardiovascular regulation. The presence of NO in the pedunculopontine tegmental (PPT) nucleus has been shown, but its cardiovascular effect has not been determined. In the present study, the cardiovascular effect of NO in the PPT nucleus was evaluated. Materials and Methods: After indu...

متن کامل

The cuneiform nucleus may be involved in the regulation of skeletal muscle tone by motor pathway: a virally mediated trans-synaptic tracing study in surgically sympathectomized mice.

Sir, We appreciate the opportunity to respond to the comment by Xiang et al. (2013) on our review on interspecies differences in the pedunculopontine nucleus area. As exemplified by the data of Xiang et al. (2013) it is evident that the mesencephalic locomotor region compromises several distinct structures that are involved in initiation and inhibition of gait, and certainly the implications of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 47  شماره 

صفحات  -

تاریخ انتشار 2011